Home
Website Under Construction
HubBucket Inc | Fusion Reactor Research and Development (R&D) Division
HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets")




Fusion Energy / Fusion Power Science
Fusion Energy / Fusion Power Science is a multi-disciplinary field focused on the science needed to develop an energy source based on controlled fusion. Fusion occurs when two nuclei combine to form a new nucleus. This process occurs in our Sun and other stars. Creating conditions for fusion on Earth involves generating and sustaining a plasma. Plasmas are gases that are so hot that electrons are freed from atomic nuclei. Researchers use electric and magnetic fields to control the resulting collection of ions and electrons because they have electrical charges. At sufficiently high temperatures, ions can overcome repulsive electrostatic forces and fuse together. This process—fusion—releases energy.
Fusion is the process that takes place in the heart of stars and provides the power that drives the universe. When light nuclei fuse to form a heavier nucleus, they release bursts of energy. This is the opposite of nuclear fission – the reaction that is used in nuclear power stations today – in which energy is released when a nucleus splits apart to form smaller nuclei.
To produce energy from fusion here on Earth, a combination of hydrogen gases – deuterium and tritium – are heated to very high temperatures (over 100 million degrees Celsius). The gas becomes a plasma and the nuclei combine to form a helium nucleus and a neutron, with a tiny fraction of the mass converted into ‘fusion’ energy. A plasma with millions of these reactions every second can provide a huge amount of energy from very small amounts of fuel.
One way to control the intensely hot plasma is to use powerful magnets. The most advanced device for this is the ‘Tokamak’, a Russian word for a ring-shaped magnetic chamber.
Fusion Energy / Fusion Power Science Quick Facts
1, Fusion offers a potential long-term energy source that uses abundant fuel supplies and does not produce greenhouse gases or long-lived radioactive waste.
2. Fusion releases energy because the mass of its bound nucleus is less than the mass of it component protons and neutrons; the mass deficit is converted to energy through Einstein’s equation (E=mc2).
3. No Carbon Emissions. The only by-products of fusion reactions are small amounts of helium, an inert gas which can be safely released without harming the environment.
4. Abundant Fuels. Deuterium can be extracted from water and tritium will be produced inside the power station from lithium, an element abundant in the earth’s crust and seawater. Even with widespread adoption of fusion power stations, these fuel supplies would last for many thousands of years.
5. Energy Efficiency. One kilogram of fusion fuel could provide the same amount of energy as 10 million kilograms of fossil fuel. A 1 Gigawatt fusion power station will need less than one tonne of fuel during a year’s operation.
6. Less Radioactive Waste than Fission. There is no radioactive waste by-product from the fusion reaction. Only reactor components become radioactive; the level of activity depends on the structural materials used. Research is being carried out on suitable materials to minimize decay times as much as possible,
7. Safety. A large-scale nuclear accident is not possible in a fusion reactor. The amounts of fuel used in fusion devices are very small (about the weight of a postage stamp at any one time). Furthermore, as the fusion process is difficult to start and keep going, there is no risk of a runaway reaction which could lead to a meltdown.
8. Reliable Power. Fusion power plants will be designed to produce a continuous supply of large amounts of electricity. Once established in the market, costs are predicted to be broadly similar to other energy sources.


Today, many countries take part in fusion research to some extent, led by the European Union, the USA, Russia and Japan, with vigorous programs also under way in China, Brazil, Canada, and Korea. Initially, fusion research in the USA and USSR was linked to atomic weapons development, and it remained classified until the 1958 Atoms for Peace conference in Geneva. Following a breakthrough at the Soviet Tokamak, Fusion Research became 'big science' in the 1970s. But the cost and complexity of the devices involved increased to the point where international co-operation was the only way forward. The Fusion Industry Association report The Global Fusion Industry in 2022 said that $2.83 billion of new investment was declared by private nuclear fusion companies since the 2021 edition of the report.
Fusion powers the Sun and stars as hydrogen atoms fuse together to form helium, and matter is converted into energy. Hydrogen, heated to very high temperatures changes from a gas to a plasma in which the negatively-charged electrons are separated from the positively-charged atomic nuclei (ions). Normally, fusion is not possible because the strongly repulsive electrostatic forces between the positively charged nuclei prevent them from getting close enough together to collide and for fusion to occur. However, if the conditions are such that the nuclei can overcome the electrostatic forces to the extent that they can come within a very close range of each other, then the attractive nuclear force (which binds protons and neutrons together in atomic nuclei) between the nuclei will outweigh the repulsive (electrostatic) force, allowing the nuclei to fuse together. Such conditions can occur when the temperature increases, causing the ions to move faster and eventually reach speeds high enough to bring the ions close enough together. The nuclei can then fuse, causing a release of energy.
Fusion Technology in the 21st Century
In the Sun, massive gravitational forces create the right conditions for fusion, but on Earth they are much harder to achieve. Fusion fuel – different isotopes of hydrogen – must be heated to extreme temperatures of the order of 50 million degrees Celsius, and must be kept stable under intense pressure, hence dense enough and confined for long enough to allow the nuclei to fuse. The aim of the controlled fusion research program is to achieve 'ignition', which occurs when enough fusion reactions take place for the process to become self-sustaining, with fresh fuel then being added to continue it. Once ignition is achieved, there is net energy yield – about four times as much as with nuclear fission. According to the Massachusetts Institute of Technology (MIT), the amount of power produced increases with the square of the pressure, so doubling the pressure leads to a fourfold increase in energy production.
With current technology, the reaction most readily feasible is between the nuclei of the two heavy forms (isotopes) of hydrogen – deuterium (D) and tritium (T). Each D-T fusion event releases 17.6 MeV (2.8 x 10-12 joule, compared with 200 MeV for a U-235 fission and 3-4 MeV for D-D fusion).a On a mass basis, the D-T fusion reaction releases over four times as much energy as uranium fission. Deuterium occurs naturally in seawater (30 grams per cubic metre), which makes it very abundant relative to other energy resources. Tritium occurs naturally only in trace quantities (produced by cosmic rays) and is radioactive, with a half-life of around 12 years. Usable quantities can be made in a conventional nuclear reactor, or in the present context, bred in a fusion system from lithium.b Lithium is found in large quantities (30 parts per million) in the Earth's crust and in weaker concentrations in the sea.
In a fusion reactor, the concept is that neutrons generated from the D-T fusion reaction will be absorbed in a blanket containing lithium which surrounds the core. The lithium is then transformed into tritium (which is used to fuel the reactor) and helium. The blanket must be thick enough (about 1 metre) to slow down the high-energy (14 MeV) neutrons. The kinetic energy of the neutrons is absorbed by the blanket, causing it to heat up. The heat energy is collected by the coolant (water, helium or Li-Pb eutectic) flowing through the blanket and, in a fusion power plant, this energy will be used to generate electricity by conventional methods. If insufficient tritium is produced, some supplementary source must be employed such as using a fission reactor to irradiate heavy water or lithium with neutrons, and extraneous tritium creates difficulties with handling, storage and transport.
The difficulty has been to develop a device that can heat the D-T fuel to a high enough temperature and confine it long enough so that more energy is released through fusion reactions than is used to get the reaction going. While the D-T reaction is the main focus of attention, long-term hopes are for a D-D reaction, but this requires much higher temperatures.
In any case, the challenge is to apply the heat to human needs, primarily generating electricity. The energy density of fusion reactions in gas is very much less than for fission reactions in solid fuel, and as noted the heat yield per reaction is 70 times less. Hence thermonuclear fusion will always have a much lower power density than nuclear fission, which means that any fusion reactor needs to be larger and therefore more costly, than a fission reactor of the same power output. In addition, nuclear fission reactors use solid fuel which is denser than a thermonuclear plasma, so the energy released is more concentrated. Also the neutron energy from fusion is higher than from fission – 14.1 MeV instead of about 2 MeV, which presents significant challenges regarding structural materials.
At present, two main experimental approaches are being studied: magnetic confinement and inertial confinement. The first method uses strong magnetic fields to contain the hot plasma. The second involves compressing a small pellet containing fusion fuel to extremely high densities using strong lasers or particle beams. A range of magnetized target fusion systems are also being developed, along with experiments with hybrid fusion.
Magnetic Confinement
In magnetic confinement fusion (MCF), hundreds of cubic metres of D-T plasma at a density of less than a milligram per cubic metre are confined by a magnetic field at a few atmospheres pressure and heated to fusion temperature.
Magnetic fields are ideal for confining a plasma because the electrical charges on the separated ions and electrons mean that they follow the magnetic field lines. The aim is to prevent the particles from coming into contact with the reactor walls as this will dissipate their heat and slow them down. The most effective magnetic configuration is toroidal, shaped like a doughnut, in which the magnetic field is curved around to form a closed loop. For proper confinement, this toroidal field must have superimposed upon it a perpendicular field component (a poloidal field). The result is a magnetic field with force lines following spiral (helical) paths that confine and control the plasma.
There are several types of toroidal confinement system, the most important being tokamaks, stellarators and reversed field pinch (RFP) devices.
In a tokamak, the toroidal field is created by a series of coils evenly spaced around the torus-shaped reactor, and the poloidal field is created by a system of horizontal coils outside the toroidal magnet structure. A strong electric current is induced in the plasma using a central solenoid, and this induced current also contributes to the poloidal field. In a stellarator, the helical lines of force are produced by a series of coils which may themselves be helical in shape. Unlike tokamaks, stellarators do not require a toroidal current to be induced in the plasma. RFP devices have the same toroidal and poloidal components as a tokamak, but the current flowing through the plasma is much stronger and the direction of the toroidal field within the plasma is reversed.
In tokamaks and RFP devices, the current flowing through the plasma also serves to heat it to a temperature of about 10 million degrees Celsius. Beyond that, additional heating systems are needed to achieve the temperatures necessary for fusion. In stellarators, these heating systems have to supply all the energy needed.
The tokamak (toroidalnya kamera ee magnetnaya katushka – torus-shaped magnetic chamber) was designed in 1951 by Soviet physicists Andrei Sakharov and Igor Tamm. Tokamaks operate within limited parameters outside which sudden losses of energy confinement (disruptions) can occur, causing major thermal and mechanical stresses to the structure and walls. Nevertheless, it is considered the most promising design, and research is continuing on various tokamaks around the world.
Research is also being carried out on several types of stellarator. Lyman Spitzer devised and began work on the first fusion device – a stellarator – at the Princeton Plasma Physics Laboratory in 1951. Due to the difficulty in confining plasmas, stellarators fell out of favour until computer modelling techniques allowed accurate geometries to be calculated. Because stellarators have no toroidal plasma current, plasma stability is increased compared with tokamaks. Since the burning plasma can be more easily controlled and monitored, stellerators have an intrinsic potential for steady-state, continuous operation. The disadvantage is that, due to their more complex shape, stellarators are much more complex than tokamaks to design and build.
RFP devices differ from tokamaks mainly in the spatial distribution of the toroidal magnetic field, which changes sign at the edge of the plasma. The RFX machine in Padua, Italy is used to study the physical problems arising from the spontaneous reorganisation of the magnetic field, which is an intrinsic feature of this configuration.
Inertial Confinement
In inertial confinement fusion, which is a newer line of research, laser or ion beams are focused very precisely onto the surface of a target, which is a pellet of D-T fuel, a few millimetres in diameter. This heats the outer layer of the material, which explodes outwards generating an inward-moving compression front or implosion that compresses and heats the inner layers of material. The core of the fuel may be compressed to one thousand times its liquid density, resulting in conditions where fusion can occur. The energy released then would heat the surrounding fuel, which may also undergo fusion leading to a chain reaction (known as ignition) as the reaction spreads outwards through the fuel. The time required for these reactions to occur is limited by the inertia of the fuel (hence the name), but is less than a microsecond. So far, most inertial confinement work has involved lasers.
Recent work at Osaka University's Institute of Laser Engineering in Japan suggests that ignition may be achieved at lower temperature with a second very intense laser pulse guided through a millimetre-high gold cone into the compressed fuel, and timed to coincide with the peak compression. This technique, known as 'fast ignition', means that fuel compression is separated from hot spot generation with ignition, making the process more practical.
In the UK First Light Fusion based near Oxford is researching inertial fusion energy (IFE) with a focus on power driver technology using an asymmetric implosion approach. As well as power generation, the company envisages material processing and chemical manufacturing applications.
The US National Ignition Facility (NIF) is a large laser-based inertial confinement fusion research device at the Lawrence Livermore National Laboratory in California. It focuses 192 powerful laser beams into a small target in a few billionths of a second, delivering more than 2 MJ of ultraviolet energy and 500 TW of peak power.
A completely different concept, the 'Z-pinch' (or 'zeta pinch'), uses a strong electrical current in a plasma to generate X-rays, which compress a tiny D-T fuel cylinder.
Magnetized Target Fusion
Magnetized target fusion (MTF), also referred to as magneto-inertial fusion (MIF), is a pulsed approach to fusion that combines the compressional heating of inertial confinement fusion with the magnetically reduced thermal transport and magnetically enhanced alpha heating of magnetic confinement fusion.
A range of MTF systems are currently being experimented with, and commonly use a magnetic field to confine a plasma with compressional heating provided by laser, electromagnetic or mechanical liner implosion. As a result of this combined approach, shorter plasma confinement times are required than for magnetic confinement (from 100 ns to 1 ms, depending on the MIF approach), reducing the requirement to stabilize the plasma for long periods. Conversely, compression can be achieved over timescales longer than those typical for inertial confinement, making it possible to achieve compression through mechanical, magnetic, chemical, or relatively low-powered laser drivers.
Several approaches are underway to examine MTF, including experiments at Los Alamos National Laboratory, Sandia National Laboratory, the University of Rochester, and private companies General Fusion and Helion Energy.
R&D challenges for MTF include whether a suitable target plasma can be formed and heated to fusion conditions while avoiding contamination from the liner, as with magnetic confinement and inertial confinement. Due to the reduced demands on confinement time and compression velocities, MTF has been pursued as a lower-cost and simpler approach to investigating these challenges than conventional fusion projects.
Hybrid Fusion
Fusion can also be combined with fission in what is referred to as hybrid nuclear fusion where the blanket surrounding the core is a subcritical fission reactor. The fusion reaction acts as a source of neutrons for the surrounding blanket, where these neutrons are captured, resulting in fission reactions taking place. These fission reactions would also produce more neutrons, thereby assisting further fission reactions in the blanket.
The concept of hybrid fusion can be compared with an accelerator-driven system (ADS), where an accelerator is the source of neutrons for the blanket assembly, rather than nuclear fusion reactions (see page on Accelerator-driven Nuclear Energy). The blanket of a hybrid fusion system can therefore contain the same fuel as an ADS – for example, the abundant element thorium or the long-lived heavy isotopes present in used nuclear fuel (from a conventional reactor) could be used as fuel.
The blanket containing fission fuel in a hybrid fusion system would not require the development of new materials capable of withstanding constant neutron bombardment, whereas such materials would be needed in the blanket of a 'conventional' fusion system. A further advantage of a hybrid system is that the fusion part would not need to produce as many neutrons as a (non-hybrid) fusion reactor would in order to generate more power than is consumed – so a commercial-scale fusion reactor in a hybrid system does not need to be as large as a fusion-only reactor.


HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets")
Legal Disclaimer:
- HubBucket Inc ("HubBucket") continues to be a completely (100%) "Self-Funded" Scientific Research Organization.
- HubBuckets Organization is a completely (100%) "Self-Funded" Management Organization.
- HubBucket Inc ("HubBucket") is a wholly owned subsidiary of HubBuckets Organization ("HubBuckets").
- HubBuckets Organization ("HubBuckets") is the "Parent Organization" of and at HubBucket Inc ("HubBucket").
- HubBuckets Organization ("HubBuckets") oversees the Executive Management, Project Management, and Program Management of and at HubBucket Inc ("HubBucket").
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") are located in the United States of America (USA); New York State (NYS); Brooklyn, NY.
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") HAVE NEVER SOLD any products and services.
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") DO NOT SELL any products and services.
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") HAVE NEVER ASKED anyone for money / funding.
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") DOES NOT ASK anyone for money / funding.
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") HAVE NEVER taken any money / funding from a Venture Capitol (VC).
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") HAVE NEVER taken any financial loan.
- HubBucket Inc ("HubBucket") and HubBuckets Organization ("HubBuckets") HAVE a ZERO TOLERANCE POLICY towards Fraud / White Collar Crime.
- The name "HubBucket") is a Legal Trademark of HubBucket Inc ("HubBucket"). All Legal Rights Reserved.
HubBucket Inc ("HubBucket") primary website: www.hubbucket.xyz
HubBuckets Organization ("HubBuckets") primary website: www.hubbuckets.com
Mr. VonVictor Valentino Rosenchild
Founder Chairman President/CEO
HubBucket Inc ("HubBucket")
HubBuckets Organization ("HubBuckets")
U.S. Navy Cryptology Veteran